Impact and preventability of adverse events in Spanish public hospitals: results of the Spanish National Study of Adverse Events (ENEAS)

JESUS Mª ARANAZ-ANDRÉS1,2, C. AIBAR-REMÓN3,4, J. VITALLER-BURILLO2, J. REQUENA-PUCHE1,2, E. TEROL-GARCÍA5, E. KELLEY6, M.T. GEA-VELAZQUEZ DE CASTRO1,2 AND THE ENEAS WORK GROUP†

1Department of Preventive Medicine, Teaching Hospital of Sant Joan d’Alacant, Miguel Hernández University of Elche, Spain, 2Department of Public Health, History Science and Gynaecology, Miguel Hernández University of Elche, Spain, 3Department of Preventive Medicine, Teaching Hospital Lozano Blesa, University of Zaragoza, Spain, 4Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Spain, 5Quality Office of the National Health Service, Ministry of Health and Consumption, Spain, and 6Agency for Healthcare Research and Quality, Rockville, MD, USA

Abstract

Objective. To determine the impact and preventability of adverse events (AEs) associated with health care in Spanish hospitals.

Design. Retrospective cohort study.

Setting. Twenty-four Spanish hospitals.

Participants. Patients of any age with a clinical record indicating an inpatient stay of >24 h and a discharge between 4 and 10 June 2005 (n = 5908).

Intervention. None.

Main Outcome Measures. Percentage of AEs considered preventable.

Results. We were able to identify 525 patients suffering AEs associated directly with medical care, who accumulated 655 AEs with 43% of these AEs considered preventable. Overall, 45% (295 AEs) were considered minor, 39% (255 AEs) moderate and 16% (105 AEs) severe. There were no significant differences in AE severity by hospital size, but AEs associated with surgical services were more likely to be severe than those associated with medical services. Some 31.4% of AEs resulted in a longer stay and 23.4% led to hospital admission. AEs associated with medical care caused 6.1 additional days per patient. Of the patients, 66.3% required additional procedures and 69.9% required additional treatments. Incidence of death in patients with AEs was 4.4% (CI 95%: 2.8—6.5). Age over 65 was associated with a higher incidence of preventable AEs. The highest percentages of preventable AEs were related to diagnosis (84.2%), to nosocomial infections (56.6%) and to care (56%).

Conclusions. In Spanish hospitals, AEs associated with health care cause distress, disability, death, lengthen hospital stay and cause increased consumption of health-care resources. A relatively high percentage of AEs in Spain may be preventable with improvements in medical care.

Keywords: adverse events, medical errors, clinical safety, quality of care, patient safety

Address reprint requests to: Jesus Mª Aranaz Andrés, Department of Public Health, Miguel Hernández University (San Juan Campus), Carretera de Alicante a Valencia s/n, 03550 San Juan de Alicante, Spain. Tel: +34 965938821; Fax: +34 965938652; E-mail: aranaz_jes@gva.es

†Members of the ENEAS work group are listed in Appendix.
Introduction

Health care has been considered a high-risk activity due to the likelihood of harm to patients as a result of care [1, 2]. Risk has been defined as the probability that an incident will occur, and a patient safety incident as any event or circumstance which could have resulted, or did result, in unnecessary harm to a patient [3]. Harm includes injury, disease, suffering, disability and death [3]. A comprehensive study of patient safety includes incidents [near misses and adverse events (AEs)], errors and system failures as antecedents, and disability and lawsuits (with negligence) as consequences.

The technical model developed in the IDEA (Identification of Adverse Events) Project [4] attempted to discriminate between extrinsic (health care system-based) and intrinsic (patient-based) contributory factors in order to assess causality and determine whether an AE or an illness complication occurred. It was also designed to discriminate between preventable and non-preventable AEs.

An AE is defined as any incident which caused health care-associated harm to a patient and an error is defined as a failure to carry out a planned action as intended or application of an incorrect plan [3]. Medical error may involve commission or omission [5–8]. Risk analysis can be conducted a priori, before any harm is produced, by means of techniques such as failure mode and effects analysis (FMEA) [9, 10] or a posteriori by analysing variables associated with harm.

AEs can be studied individually, by means of techniques such as root cause analysis to determine causal cascades and latent failures, or collectively, by means of epidemiological studies to characterize consequences and identify contributing factors. Root cause analysis has been recommended by the Joint Commission on Accreditation of Healthcare Organisations in all the cases where a serious AE or key incident has occurred [11]. Epidemiological studies have, on the other hand, been recommended by the WHO World Alliance for Patient Safety [12] and by the Quality Office of the Spanish National Health System [13].

Epidemiology has contributed to the understanding of risks and hazards in health care [14]. Patient safety epidemiological studies, to date, have involved review of medical records and have been done from a medico-legal perspective by looking for negligence, as in studies from the USA, or from a quality improvement perspective, looking for preventability, to inform national policies to improve the safety of health systems. Epidemiological studies conducted in the USA [15–17], Australia [18], Great Britain [19], Denmark [20], New Zealand [21], Canada [22, 23], France [24] and Spain [25] have estimated AE rates of between 4% and 17% and have judged ~50% to be preventable [26].

These studies have variously estimated the frequency of all AEs, the fraction judged preventable (most non-US studies), the proportion of AEs associated with temporary or permanent disability (most studies), the extent of prolongation of hospital stay (most studies), the fraction judged to be due to negligence (US studies) and associated costs [27, 28]. Questions have been raised about the extent to which the various outcomes, including death, can legitimately be attributed to AEs, given the inherent limitations of the methods used [29–33].

At the end, the goal is to develop strategies to control AEs. In prioritizing these strategies, the frequency of the AEs, their potential impact on the patient or the organization, and the ability of health-care system to prevent AEs should all be taken into account. These three dimensions of AEs (their frequency, severity and impact, and preventability) are the keys to guiding organizations in the design of the most efficient strategies for the improvement of patient safety.

The aim of this study was to identify AEs, to estimate the fraction of AEs considered preventable, and to determine their impact in terms of disability, death and/or prolongation of stay in Spanish public hospitals.

Methods

This retrospective cohort study involved a two-stage sampling approach. The required sample size was estimated at 6500 discharges with a precision of 1.32 and a design effect of 2. We stratified by hospital size and then selected hospitals at random until reaching the target sample size, using a count of all discharges between the 7th and 13th of May 2005 to establish the sampling algorithm. To generate the study sample, the number of discharges needed in each stratum was proportional to the number of discharges in the base population that week. Patients of all ages were included if they stayed >24 h in one of the selected hospitals and had a clinical record suggesting they had been discharged between the 4th and the 10th of June 2005 (inclusive). On the basis of these criteria, the sample comprised 24 hospitals: 6 small hospitals (fewer than 200 beds) with 451 discharges, 13 medium-sized (between 200 and 499 beds) with 2885 discharges and 5 large (500 or more beds) with 2288 discharges.

An AE was defined as any health care-associated incident which caused harm, with a causation score of at least 4. Causation was scored by reviewers using a 6-point scale, with 1 being no or minimal evidence and 6 practically certain evidence of health care-related contributory factors causing the harm. A score of ≥4 was considered positive. The same method was used to assess preventability score.

We studied variables linked to health care (hospital service, stay in days and extrinsic risk factors); those linked to the main diagnosis or procedure and American Society of Anaesthesiology (ASA) score [34]; those linked to the patient (intrinsic factors) and those linked to AE impact (where the hospital stay was caused by the AEs, additional procedures and treatments as a consequence of AEs, disability or death). An AE was defined as severe when it was related to patient death or required surgery (due to the risk involved) and as moderate if it caused re-admission or prolonged hospital stay.

Data were collected by means of the screening guide of the IDEA project [4], a questionnaire elaborated using
consensus techniques based on a previous investigation. This project provided a list of criteria similar to the one used in the New York, Utah and Colorado studies and this was used to identify records with a potential for AEs. Clinical records that fulfilled at least 1 of the 19 criteria of the screening guide were reviewed in detail to further characterize the AEs by completing the modular revision form (MRF2) [35]. Nursing staff or physicians at each hospital examined all selected clinical records. After screening, criteria-positive records went forward for second-stage review and an MRF2 (Spanish version) was completed; a physician was used for medical and a surgeon was used for surgical cases. The uncertain cases were re-analysed by the executive committee.

The initial study sample consisted of 5908 discharges from 24 hospitals. On conducting the screening guide, hospital staff found that 103 clinical records were missing. When the external reviewers prepared to complete the MRF2, they found that the clinical information from 181 cases could not be retrieved and therefore the total number of patients studied was 5624.

We calculated the percentage of preventable AEs per hospital size and service type. A univariate analysis was conducted to describe the sample. A bivariate analysis was performed to state the relationships among the variables (using the \(\chi^2 \) to compare ratios) and an stepwise logistic regression model using likelihood ratio test to control the confusion and/or the interaction among them. The hypothesis contrasts were bilateral with a 0.05 significance level except for the logistic regression model in which we used a P-value <0.05 for inclusion and <0.10 for exclusion. The dependent variable was preventable (1) or non-preventable (0). The statistical analysis was conducted using the statistical programme SPSS version 12.0.

Results

On screening the study sample of 5624 patients, 1755 (32%) were identified as potentially having AEs. Among those with potential AEs, reviewers detected 1063 patients with harm during hospitalization period. Among these 1063 patients, 525 patients had AEs associated directly with medical care and these patients experienced 655 AEs based on a causation score >4. Among the 525 patients with AEs, 17.7% suffered more than one AE. Of these 525 patients, 473 suffered an AE related to hospital care with 105 of these cases (22.2%) associated with a hospital re-admission. Forty-six patients out of 52 with AEs occurring in a non-hospital service were admitted to hospital because of the AEs. Of the 151 patients (105 + 46) whose AE was related to hospital admission, 47% were admitted to a large hospital, 41% to a medium-sized one and 11.3% to a small one. In addition, 51.7% of these patients were admitted to a medical service and 48.3% to a surgical service. Nevertheless, the percentage of AEs associated with re-admissions did not differ substantially by hospital size or service type (Table 1).

Table 1 AEs and percentage resulting in re-admission

<table>
<thead>
<tr>
<th>Hospital size</th>
<th>AEs</th>
<th>% resulting in re-admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>319</td>
<td>22.9</td>
</tr>
<tr>
<td>Medium</td>
<td>265</td>
<td>23.8</td>
</tr>
<tr>
<td>Small</td>
<td>71</td>
<td>23.9</td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>312</td>
<td>25.0</td>
</tr>
<tr>
<td>Surgical</td>
<td>343</td>
<td>21.9</td>
</tr>
<tr>
<td>Total</td>
<td>655</td>
<td>23.4</td>
</tr>
</tbody>
</table>

AEs, adverse events.

Out of 5624 patients, 112 patients had died (102 of these patients were identified at the screening stage and 10 patients were identified based on another screening criterion. Among these 112 patients (2% of total patients), 23 reported AEs (20.5% of patients who died or 0.41% of all of the study patients). Thus, incidence of death in patients with AEs was 4.4% (CI 95% 2.8–6.5). In 15 cases (13.4% of patients who died and 0.2% of total of patients), there was an association between the AEs and the death, with seven AEs considered to be a direct cause of death. Among the seven AEs that were a direct cause of death, only one was considered preventable. Among the 8 AEs related to patient death, half were considered preventable.

Of these 655 AEs, 45% (295) were considered minor, 39% (255) moderate and 16% (105) severe. Although differences in the distribution of the severity of the AEs per hospital size were found (Fig. 1), they did not reach statistical significance (\(P = 0.125 \)). Among patients admitted to medical services, 50% of AEs were minor, 42.9% moderate and 7.1% severe, whereas among patients admitted to surgical services, 40.5% were minor, 35.3% moderate and 24.2% severe. These differences were statistically significant (\(P < 0.001 \)).

Severity of AEs was not associated with ASA score of patients (\(P = 0.170 \), although severe AEs were less frequent among patients with higher ASA scores. Severity of AEs was associated with the prognosis for the primary diagnosis and this reached statistical significance (\(P = 0.012 \)). In cases expecting recovery with residual disability, percentage of severe AEs was higher. The pattern was similar in those
cases with a total recovery to the basal state of health prognosis and in patients with terminal disease.

Among AEs, 31.4% resulted in a longer stay and 23.4% led to hospital admission (some patients re-admitted due to an AE had more than one AE). AEs leading to longer stay added a median of 4 hospital days whereas AEs leading to re-admission added a median of 7 hospital days. Consequently, an estimated 3200 additional days were attributable to AEs associated with medical care (6.1 additional stays per patient) and 1157 of these were due to preventable AEs (2.2 additional days per patient). Among the AEs, 66.3% required additional procedures (e.g., radiologic procedures) and 69.9% required additional treatments (e.g., medication, rehabilitation or surgery).

Some 42.6% (278/655) of AEs were considered preventable (rated as having at least moderate evidence of preventability). We found no association between preventability and service type but we did find an association between preventability and hospital size. AEs detected in small hospitals were more often preventable (64.8%) than those detected in large and medium-sized hospitals (40.1% and 39.8%, respectively) (P < 0.001). Preventability of AEs was not associated with severity: 43.8% of minor, 42.0% of moderate and 41.9% of severe AEs were preventable. Among AEs, the percentage judged preventable varied by type with 84.2% of those associated with diagnosis judged preventable, whereas 55.4% of those associated with nosocomial infections and 52.0% of those associated with medical care were judged preventable (Table 2). The overall preventability did not differ significantly according to service type, although AEs related to nosocomial infections were more frequently preventable for medical services, whereas those associated with diagnosis were more frequently preventable for surgical services.

Multivariable analysis showed that the presence of intrinsic risk factors, hospital size and the nature of the AEs were associated with preventability. AEs in small hospitals were 2.5 times more likely to be judged preventable than AEs in large hospitals. Using AEs related to the use of medication as the reference category, those associated with diagnosis were 11.4 times more preventable, those associated with nosocomial infection 2.5 times, and those associated with care 2.3 times (Table 3).

Discussion

The Spanish National Study of Adverse Events (ENEAS) is one of a group of studies whose objective is to improve health-care quality by examining patient safety. To identify the maximum number of improvement opportunities, the methodology allows that a patient could suffer several AEs during hospitalization, including AEs that occurred in the pre-hospitalization period and those detected during the hospital stay as well as those suffered in a previous admission and that were associated with re-admission. Results about contributory factors (patient and health care related), nature (type) and care process associated with AEs and the severity of AEs have been published elsewhere [36, 22]. The severity of the AEs in this study is congruent with that stated in other studies. A total of 16% of AEs were considered severe. No differences in pattern are found either by hospital size, although differences have been found by type of unit with a higher proportion of severe AEs found in surgical units.

Until recently, the health-related, social and economic impact of AEs has been a silent epidemic in Spain. Our results suggest that the impact of AEs appears to be associated with the complexity of health-care services and the vulnerability of patients. In our study, nearly two-thirds of the AEs were considered moderate or serious and nearly one-third resulted in a longer hospital stay. The estimated 4.4% incidence of death among subjects having AEs was not trivial.

Until recently, the impact of AEs had not been studied in Europe with the exception of a recent study of serious AEs in France. In some countries like the USA, Australia, Canada and New Zealand, the impact of the AEs has been studied from a population perspective. Data on the frequency and preventability of AEs have otherwise not been available previously in Spain. Although AEs have been studied from the legal perspective in Europe, ours is among the first studies in Europe to study AEs for the purpose the improvement of the quality and among the first to identify predictive factors for AE preventability.

Hospital size was associated with preventability of AEs, but not with the severity of AEs. However, the severity of AEs was associated with service type with a higher
Table 3: Multivariate model assessing the odds of preventability

<table>
<thead>
<tr>
<th>Intrinsic (patient) risk factors a</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital size b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>0.96</td>
<td>0.67–1.37</td>
</tr>
<tr>
<td>Small</td>
<td>2.51</td>
<td>1.42–4.39</td>
</tr>
<tr>
<td>Nature of adverse event c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated with nosocomial infection</td>
<td>2.52</td>
<td>1.66–3.83</td>
</tr>
<tr>
<td>Associated with a procedure</td>
<td>1.02</td>
<td>0.66–1.57</td>
</tr>
<tr>
<td>Associated with diagnosis</td>
<td>11.4</td>
<td>3.17–41.02</td>
</tr>
<tr>
<td>Other</td>
<td>0.74</td>
<td>0.14–3.79</td>
</tr>
<tr>
<td>Associated with care</td>
<td>2.28</td>
<td>1.22–4.28</td>
</tr>
</tbody>
</table>

aReference category: patients without intrinsic risk factors.
bReference category: large hospital size.
cReference category: associated with medication.

In conclusion, the health-related, social and economic impact of AEs, until recently a silent epidemic, makes the need to understand AEs a public health priority. Our results suggest that a knowledge-based culture may be preferred to a guilt-based culture. Knowing which types of AEs are avoidable and identifying the predictive factors that are associated with AEs will allow us to develop strategies to improve the safety of health care.

Funding

The ENEAS study was conducted under the auspices of a collaboration agreement between the Miguel Hernandez University and the Ministry of Health and Consumption, and financed by the latter.

Appendix

ENEAS work group

The study was approved by the Ethics and Clinical Research Committee of Aragón.

The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, an
exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its licensees to permit this article (if accepted) to be published in JECH editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence.

A. Infante, M.P. Polo, J.M. Casal, E. Sierra, Mª.J. García, Y. Agra, I. Palanca (Agencia de Calidad, Ministerio de Sanidad y Consumo); A. Zarco, C. Soro (H. de Alicante); E.M. Ivorra, F. Bartolomé, R. Limón, J.A. Gómez, V. Aguillo, Mª.A. Montesinos (H. Sant Joan d’Alacant); J.R. García, L.R. Aguado, Mª.P. Cortés, A. Misiego, L. Jiménez, M.V. Villaverde, M.B. Abadía (H. Miguel Servet Zaragoza); C. Ceballos, E.E. García, C.A. de la Hoz (C.H. de Salamanca); P. Jaén, L. Lechuga (H. de Linares, Jaén); J. Rebull, I.L. Brull, C. Gomisbú, M.F. Doménech (H. de Tortosa, Tarragona); E. Gómez (H. Malva-Rosa, Valencia); D. Becerra, C. Donate, C. Valero, Mª.D. Martínez (H. San Cecilio, Granada); J.C. Ansede, C. Albeniz, S. Arias, M. Carrón, M. Loboite, P. Vadillo (Hospital de Getafe); F.J. Lameiro, Mª.A. Jáuregui, I. Sarasa, C. Silvestre (H. de Navarra); F. Cots, C. Lasso, P. García, N. Bartolomé (H. del Mar, Barcelona); V. del Campo, I. Felpeto, R.Mª. Guimarey (H. do Meixoeiro, Vigo, Pontevedra); E. Homs, M. Durany, M. Quintana, J. Montes (H. de L'Hospitalat); J.C. Valenzuela, M. Díaz, Mª.L. Calonge (H. La Mancha-Centro, Alcázar de San Juan, Ciudad Real); M. Valledor, Mª.T. Martín, R.Mª. Jiménez (H. de Avilés, Asturias); A. Cabrera, Mª.J. Murcia, S. Blasco (H. de Orihuela, Alicante); A. Sanchez-Porro, Mª.V. Gámez, F. Calle (H. de Don Benito, Badajoz); A. Biurrun, E. León, A.F. Ovejero (H. de Talavera de la Reina Toledo); R. Martín, M. Rivas, A. Torno, C. Gómez-Alfériz, F. Enríquez (H. de Cabra, Córdoba); J.A. Cabello, D. Pérez, L. López (H. de Lorca, Murcia); J.F. Anseca, A. Gómez, J. Martínez (H. de Hellín, Albacete); J.M. Celorrio, Mª.E. Clemente, Mª.C. García (H. de Calatayud, Zaragoza); J. Orobitg, Mª.T. Gaig (H. Móra de Ebro, Tarragona); M. Vicioso, P. Del Rio, Mª.P. Capetillo (H. San Eloy, Baracaldo, Vizcaya); S. Cuesta, A. Martínez, E.Mª. Berrozpe (H.F. Calahorra, La Rioja); J.J. Miralles, R. García (Universidad Miguel Hernández); E. Fernández (CCAA de Andalucía); J. De la Tassa (CCAA de Asturias); F.X. Barceló (CCAA de Baleares); P. García (CCAA de Canarias); P. Herrera (CCAA de Cantabria); J. Fernández (CCAA de Castilla La Mancha); J.M García (CCAA of Castilla León); L.L. Torralba (CCAA of Cataluña); Mª.A. Blanco (CCAA of Ceuta/Melilla); J.M. Pajuelo (CCAA of Extremadura); J. Rey (CCAA of Galicia); A. Pardo (CCAA of Madrid); J. Paredez (CCAA of Murcia); M.E. Idote (CCAA of Navarra); J. Darpón (CCAA of País Vasco); M. Carreras (CCAA of Rioja); R. Meneu (Comunidad Valenciana).

Confidentiality and ethical aspects

This study was conducted following the recommendations of the WHO (World Health Organization) and the Cohesion Law of the SNS [38] (Spanish National Health System). The necessary conditions to guarantee the enforcement of the Organic Law 15/1999 of Personal Data Protection were established. The initial data collection was nominal but the individual identification was exclusively maintained until the quality controls of the database were passed. From this point on, a database under the exclusive control of the director of the study allowed a link between the data and the patients. All the participants in this study were obliged to maintain the confidentiality of the information they had access to during the study, as well as in any other professional activity. The data were presented in such a way that no patient could be identified from the diffusion of the results.

References

Accepted for publication 23 September 2009